Advertisements
Advertisements
Question
Evaluate of the following:
`(10.4)^3`
Solution
In the given problem, we have to find the value of numbers
Given`(10.4)^3`
In order to find `(10.4)^3` we are using identity `(a+b^3) = a^3 +b^3 + 3ab(a+b)`
We can write `(10.4)^3` as `(10+0.4)^3`
Hence where `a=10,b = 0.4`
`(10.4)^3 = (10 +0.4)^3`
`= (10)^3 + (0.4)^3 + 3 (10) (0.4)(10+0.4)`
`= 1000 + 0 .064+ 12 xx 10.4`
`= 1000 + 0 .064 + 124.8`
`= 1000 +124.864`
` = 1124.864`
The value of `(10.4)^3` is 1124.864.
APPEARS IN
RELATED QUESTIONS
Evaluate the following using suitable identity:
(99)3
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Factorise the following:
27y3 + 125z3
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Write in the expanded form:
`(2 + x - 2y)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Evaluate of the following:
933 − 1073
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Find the square of 2a + b.
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
Evaluate: (4 − ab) (8 + ab)
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19
Factorise the following:
9y2 – 66yz + 121z2
Expand the following:
`(4 - 1/(3x))^3`
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3