Advertisements
Advertisements
Question
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Solution
`27p^3 - 1/216 - 9/2p^2 + 1/4p`
= `(3p)^3 - (1/6)^3 - 3(3p)(1/6)(3p - 1/6)`
= `(3p-1/6)^3` ...[Using a3 − b3 − 3ab(a − b) = (a − b)3]
= `(3p-1/6)(3p-1/6)(3p-1/6)`
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Write the following cube in expanded form:
(2a – 3b)3
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If x = −2 and y = 1, by using an identity find the value of the following
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Evaluate: (2 − z) (15 − z)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Evaluate the following without multiplying:
(999)2
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).