Advertisements
Advertisements
Question
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Solution
Since, x + y + z = 0
= x + y = −z(x + y)3 = (−z)3
= x3 + y3 + 3xy(x + y) = (−z)3
= x3 + y3 + 3xy(−z) = −z3 ...[∵ x + y = −z]
= x3 + y3 − 3xyz = (−z)3
= x3 + y3 + z3 = 3xyz
Hence, if x + y + z = 0, then
x3 + y3 + z3 = 3xyz
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(x + 8) (x – 10)
Expand the following, using suitable identity:
(3a – 7b – c)2
Factorise the following:
27y3 + 125z3
Factorise the following:
64m3 – 343n3
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Write in the expanded form:
(2a - 3b - c)2
Write in the expanded form: (ab + bc + ca)2
Find the following product:
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
Use the direct method to evaluate :
(2a+3) (2a−3)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.