Advertisements
Advertisements
Question
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
Solution
We have to find the value of `x^6 + 1/x^6`
Given `x+ 1/x = 3`
Using identity `(a+b)^2 = a^2 + 2ab +b^2`
Here `a= x, b=1/x`
`(x+1/x)^2 = x^2 + 2 xx x xx 1/x +(1/x)^2`
`(x+1/x)^2 = x^2 + 2 xx x xx 1/x +1/x xx1/x`
`(x+1/x)^2 = x^2 +2+ 1/ x^2`
By substituting the value of `x+1/x = 3` We get,
`(3)^2 = x^2 + 2 + 1/x^2`
`3 xx 3 = x^2 + 2 +1/x^2`
By transposing + 2 to left hand side, we get
`9 -2 = x^2 + 1/x^2`
`7 = x^2 + 1/x^2`
Cubing on both sides we get,
`(7)^3 = (x^2 + 1/x^2)^3`
Using identity \[\left( a + b \right)^3 = a^3 + b^3 + 3ab\left( a + b \right)\]
Here `a=x^3 , b=1/x^2`
`343 = (x^2)^3 + (1/x^2)^3 + 3xx x^2 xx 1/x^2 (x^2 + 1/x^2)`
`343 = x^6 + 1/x^6 + 3xx x^2 xx 1/x^2 (x^2 + 1/x^2)`
Put `x^2 + 1/x^2 = 7`we get
`343 = x^6 +1/x^6 + 3 xx 7`
`343 = x^6 +1/x^6 +21`
By transposing 21 to left hand side we get ,
`343 - 21 = x^6 + 1/x^6`
`322 = x^6 + 1/x^6`
Hence the value of `x^6 + 1/x^6` is 322.
APPEARS IN
RELATED QUESTIONS
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Write the expanded form:
`(-3x + y + z)^2`
Write in the expanded form (a2 + b2 + c2 )2
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
Use identities to evaluate : (998)2
If a + b = 7 and ab = 10; find a - b.
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
If a - b = 10 and ab = 11; find a + b.
If x + y = 9, xy = 20
find: x2 - y2.
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.