Advertisements
Advertisements
Question
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Solution
In the given problem, we have to find the value of (3x + 2y) (9x2 − 6xy + 4y2)
Given (3x + 2y) (9x2 − 6xy + 4y2)
We shall use the identity `a^3 + b^3 = (a+b)(a^2 + b^2 - ab)`
We can rearrange the `(3x + 2y)(9x^3 - 6xy + 4y^2)`as
` = (3x + 2y)[(3x)^2 - (3x)(2y)+(2y)^2]`
` = (3x)^2 + (2y)^3`
` = (3x) xx (3x) xx (3x) + (2y) xx 2y xx (2y)`
` = 27x^3 + 8y^3`
Hence the Product value of `(3x+ 2y) (9x^2 - 6xy + 4y^2)`is `27x^3 + 8y^3`.
APPEARS IN
RELATED QUESTIONS
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Write in the expanded form:
`(a + 2b + c)^2`
If x = −2 and y = 1, by using an identity find the value of the following
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Find the square of `(3a)/(2b) - (2b)/(3a)`.
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Find the squares of the following:
3p - 4q2
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Expand the following:
`(4 - 1/(3x))^3`
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`