Advertisements
Advertisements
Question
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Sum
Solution
(a + b + c)2 = (9)2
a2 + b2 + c2 + 2ab + 2bc + 2ca = 81
⇒ 41 + 2(ab + bc + ca) = 81
⇒ 2(ab + bc + ca)
= 81 - 41
= 40
⇒ ab + bc + ca
= 20.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Factorise the following:
27y3 + 125z3
Factorise:
27x3 + y3 + z3 – 9xyz
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: (2a + 0.5) (7a − 0.3)
Simplify by using formula :
(a + b - c) (a - b + c)
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`