Advertisements
Advertisements
Question
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
Options
8
10
12
13
Solution
In the given problem, we have to find the value of `x- 1/x`
Given `x^2 + 1/x^2 = 102`
We shall use the identity `(a-b)^2 = a^2 + b^2 - 2ab`
Here putting`x^2 + 1/x^2 = 102`,
`(x-1/x)^2 = x^2 + 1/x^2 - 2 (x- 1/x)`
`(x-1/x)^2 =102 - 2(x xx 1/x)`
`(x- 1/x)^2 = 102 -2`
`(x- 1/x)^2 = 100`
`(x-1/x) xx (x - 1/ x) = 10 xx 10`
`(x-1/x) = 10`
Hence the value of `x-1/x`is 10 .
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(3a – 7b – c)2
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Write in the expanded form: `(x + 2y + 4z)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
Find the square of : 3a - 4b
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
Evaluate: (2a + 0.5) (7a − 0.3)
Evaluate: (4 − ab) (8 + ab)
Evaluate: (5xy − 7) (7xy + 9)
Evaluate: 203 × 197
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Evaluate the following without multiplying:
(103)2
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.