Advertisements
Advertisements
Question
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
Solution
We have
`(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
`=[x^2 + y^2 + (-z)^2]^2 - [x^2 + (-y^2) + (z^2)]^2`
`= [(x^2)^2 + (y^2)^2 + (-z^2)^2 + 2(x^2)(y^2) + 2(y^2)(-z^2) + 2(x^2)(-z^2)]`
`-[(x^2)^2 + (-y^2)^2 + (z^2)^2 + 2(x^2)(-y^2) + 2(-y^2)z62 + 2x^2z^2]`
`[∵ (a + b + c)^2 = a^2 + b^2 = c^2 + 2ab + 2bc + 2ca]`
`= x^4 + y^2 + z^4 + 2x^2y^2 - 2z^2x^2 - x^4 - y^4 - z^4 + 2x^2y^2 + 2y^2z^2 - 2z^2x^2`
`= 4x^2y^2 - 4z^2x^2`
`∴ (x^2 + y^2 - z^2)^2 - (x^2 - y^2 + z^2)^2 = 4x^2y^2 - 4z^2x^2`
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Factorise:
27x3 + y3 + z3 – 9xyz
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Write in the expanded form: (-2x + 3y + 2z)2
If a − b = 4 and ab = 21, find the value of a3 −b3
Evaluate of the following:
(103)3
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
Use the direct method to evaluate :
(ab+x2) (ab−x2)
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If p + q = 8 and p - q = 4, find:
pq
If x + y = 1 and xy = -12; find:
x - y
If x + y = 1 and xy = -12; find:
x2 - y2.
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Simplify:
(2x + y)(4x2 - 2xy + y2)
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.