Advertisements
Advertisements
Question
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Solution
We have,
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
`= [x^2 + y^2 + z^2 + 2xy + 2yz + 2zx] + [x^2 + y^2/4 + z^2/9 + 2x . y/2 + 2 (zx)/3 + (yz)/3] - [x^2/4 + y^2/9 + z^2/10 + (xy)/3 + (xz)/4 + (yz)/6]`
`= x^2 + y^2 + z^2 + x^2 + y^2/4 + z^2/9 - x^2/4 - y^2/9 - z^2/16 + 2xy + 2x . y/2 - (xy)/3 + 2yz + (yz)/3 - (yz)/6 + 2zx + (2zx)/3 - (xz)/4`
`= (8x^2 - x^2)/4 + (36y^2 + 9y^2 - 4y^2)/36 + (144z^2 + 16z^2 - 9z^2)/144 + (6xy + 3xy - xy)/3 + (13yz)/6 + (29xz)/12`
`= (7x^2)/4 + (41y^2)/36 + (151z^2)/144 + (8xy)/3 + (13yz)/6 + (29zx)/12`
`∴ (x + y + z)^2 + (x + y/2 + z/3)^2 - (x/2 + y/3 + z/4)^2`
`= (7x^2)/4 + (41y^2)/36 + (151Z^2)/144 + (8xy)/3 + (13yz)/6 + (29zx)/12`
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
4y2 – 4y + 1
Expand the following, using suitable identity:
(2x – y + z)2
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Write the expanded form:
`(-3x + y + z)^2`
Simplify `(a + b + c)^2 + (a - b + c)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If x = −2 and y = 1, by using an identity find the value of the following
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: (2 − z) (15 − z)
Simplify by using formula :
(x + y - 3) (x + y + 3)
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
Expand the following:
(3a – 5b – c)2
Expand the following:
(–x + 2y – 3z)2