Advertisements
Advertisements
Question
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Solution
Given,
(x2 + x − 2)(x2 − x + 2)
= [x2 + (x − 2)][x2 − (x − 2)]
using identity (a − b)(a + b) = a2 − b2
= (x2)2 − (x − 2)2
using identity, (a − b)2 = a2 − 2ab + b2
= x4 − (x2 − 4x + 4)
= x4 − x2 + 4x − 4
Hence, (x2 + x − 2)(x2 − x + 2) = x4 − x2 + 4x − 4.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Factorise the following:
27 – 125a3 – 135a + 225a2
Evaluate the following using identities:
117 x 83
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
If a - b = 7 and ab = 18; find a + b.
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Use the direct method to evaluate :
(x+1) (x−1)
Expand the following:
(a + 3b)2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Expand the following:
(3a – 2b)3