Advertisements
Advertisements
Question
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Solution
In the given problem, we have to find the value of `x^3 - 1/x^3`
Given `x- 1/x = 5`
We shall use the identity `(a- b)^3 = a^3 -b^3 - 3ab(a-b)`
Here putting, `x- 1/x = 5`,
`(x-1/x)^3 = x^3 -1/x^3 -3 (x xx 1/x)(x- 1/x)`
`(5)^3 = x^3 - 1/x^3 -3 (x xx 1/x) (x-1/x)`
`125 = x^3 - 1/x^3 - 3 (x - 1/x)`
`125 = x^3 -1 /x^3 - 3 xx 5 `
`125 = x^3 -1 /x^3 -15 `
`125 +15= x^3 -1 /x^3 `
`140 = x^3 -1 /x^3 `
Hence the value of `x^3 -1 /x^3 ` is 140.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Write the following cube in expanded form:
(2a – 3b)3
Evaluate the following using identities:
(399)2
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Evaluate of the following:
463+343
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Find the following product:
If x = −2 and y = 1, by using an identity find the value of the following
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use the direct method to evaluate :
(ab+x2) (ab−x2)
If x + y = 9, xy = 20
find: x2 - y2.
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.