Advertisements
Advertisements
Question
If p + q = 8 and p - q = 4, find:
pq
Solution
(p + q)2 = (8)2
p2 + q2 + 2pq = 64 ...(i)
(p - q)2 = (4)2
p2 + q2 - 2pq = 16
p2 + q2 = 16 + 2pq ...(ii)
Using (ii) in (i), we get :
16 + 2pq + 2pq = 64
⇒ 4pq
= 64 - 16
= 48
⇒ pq = 12.
APPEARS IN
RELATED QUESTIONS
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Write in the expanded form: (ab + bc + ca)2
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
Expand the following:
(4a – b + 2c)2