Advertisements
Advertisements
Question
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
Solution
We have to find the value of `a^2/(bc) + b^2/(ca) +c^2/(ab)`
Given `a+b+c = 0`
Using identity `a^3 +b^3 +c^3 - 3abc = (a+b+c) (a^2 +b^2 +c^2 - ab - bc - ca)`
Put `a+b +c = 0`
`a^3 +b^3 +c^3 - 3abc = (0)(a^2 +b^2 +c^2 - ab - bc - ca)`
`a^3 +b^3 + c^3 - 3abc = 0`
`a^3 +b^3 + c^3 = 3abc `
`a^3/(abc) + b^3/(abc) + c^3/(abc) = 3`
`(a xx axx a)/(abc) +(b xx bxx b)/(abc) +(c xx cxx c)/(abc) =3`
`a^2/bc +b^2/ac +c^2 /ab=3`
Hence the value of `a^2/(bc) + b^2/(ac) +c^2/(ab)` is 3.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Evaluate the following using identities:
(2x + y) (2x − y)
Write in the expanded form: `(x/y + y/z + z/x)^2`
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If a1/3 + b1/3 + c1/3 = 0, then
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Evaluate: (6 − 5xy) (6 + 5xy)
Evaluate: 203 × 197
Find the squares of the following:
3p - 4q2
Simplify by using formula :
(5x - 9) (5x + 9)
If p + q = 8 and p - q = 4, find:
pq
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).