Advertisements
Advertisements
Question
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
Solution
We have to find the value of `a - 1/a`
Given `a^2+1/a^2 = 102`
Using identity `(x-y)^2 = x^2 +y^2 - 2xy`
Here `x=a,y = 1/a`
`(a-1/a )^2 = a^2 + (1/a)^2 - 2xx a xx 1/a`
`(a-1/a )^2 = a^2 + 1/a^2 - 2xx a xx 1/a`
By substituting `a^2 + 1/a^2 = 102` we get
`(a-1/a)^2 = 102 -2`
`(a-1/a)^2 = 100`
`(a-1/a )(a-1/a) = 10 xx 10`
`(a-1/a) = 10`
Hence the value of `a-1/a` is 10.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Write in the expanded form:
`(a + 2b + c)^2`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Evaluate of the following:
(598)3
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
Find the square of 2a + b.
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: (4 − ab) (8 + ab)
Expand the following:
(a + 4) (a + 7)
Expand the following:
(m + 8) (m - 7)
Expand the following:
(3a – 5b – c)2