Advertisements
Advertisements
Question
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Solution
We have
`(x + 1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
`=> (x + 1/x)^2 = (x^2 + 1/x^2) + 2`
`=> (x + 1/x)^2 = 79 + 2`
`=> (x + 1/x)^2 = 81`
`=> (x + 1/x)^2 = (+-9)^2`
`=> x + 1/x = +-9`
APPEARS IN
RELATED QUESTIONS
Write the following cube in expanded form:
(2a – 3b)3
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate the following using identities:
(0.98)2
Write in the expanded form:
`(a + 2b + c)^2`
Simplify of the following:
(x+3)3 + (x−3)3
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Use identities to evaluate : (97)2
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: (4 − ab) (8 + ab)
Evaluate: (5xy − 7) (7xy + 9)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Expand the following:
`(4 - 1/(3x))^3`