Advertisements
Advertisements
Question
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Options
108
207
669
729
Solution
We have to find the value of `a^3 +b^3 +c^3 - 3abc`
Given `a+b+c = 9,ab +bc +ca = 23`
Using identity `(a+b+c)^2 = a^2 +b^2 +c^2 +2ab +2bc + 2ca` we get,
`(9)^2 = a^2 +b^2 +c^2 +2 (ab+bc +ca)`
` 9 xx 9 = a^2 +b^2 +c^2 +2 xx 23`
`81 = a^2 +b^2 +c^2 +46`
By transposing +46 to left hand side we get,
`81-46 = a^2 +b^2 +c^2`
`35 = a^2 +b^2 +c^2`
Using identity `a^3 +b^3 +c^3 -3abc = (a+b+c)[a^2 + b^2 +c^2 - (ab+bc+ca)]`
`9 xx [35 -23]`
` = 9 xx 12`
` = 108`
The value of `a^3 +b^3 +c^3 -3abc` is 108.
APPEARS IN
RELATED QUESTIONS
Evaluate the following using suitable identity:
(102)3
Evaluate the following using suitable identity:
(998)3
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Find the following product:
If a + b = 8 and ab = 6, find the value of a3 + b3
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Find the squares of the following:
3p - 4q2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
(2x + y)(4x2 - 2xy + y2)
Expand the following:
(4a – b + 2c)2
Expand the following:
(3a – 5b – c)2
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.