Advertisements
Advertisements
Question
Evaluate the following using suitable identity:
(102)3
Solution
It is known that,
(a + b)3 = a3 + b3 + 3ab(a + b) and (a − b)3 = a3 − b3 − 3ab(a − b)
∴ (102)3 = (100 + 2)3
= (100)3 + (2)3 + 3(100)(2)(100 + 2)
= 1000000 + 8 + 600(102)
= 1000000 + 8 + 61200
= 1061208
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Evaluate of the following:
1043 + 963
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Use direct method to evaluate the following products :
(x + 8)(x + 3)
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Evaluate the following :
7.16 x 7.16 + 2.16 x 7.16 + 2.16 x 2.16
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).