Advertisements
Advertisements
प्रश्न
Evaluate the following using suitable identity:
(102)3
उत्तर
It is known that,
(a + b)3 = a3 + b3 + 3ab(a + b) and (a − b)3 = a3 − b3 − 3ab(a − b)
∴ (102)3 = (100 + 2)3
= (100)3 + (2)3 + 3(100)(2)(100 + 2)
= 1000000 + 8 + 600(102)
= 1000000 + 8 + 61200
= 1061208
APPEARS IN
संबंधित प्रश्न
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Write in the expanded form:
`(a + 2b + c)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
If a − b = 4 and ab = 21, find the value of a3 −b3
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the following product:
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Expand the following:
(a + 3b)2
Simplify by using formula :
(5x - 9) (5x + 9)
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).