Advertisements
Advertisements
Question
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
Solution
Given \[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
We shall use the identity `a^3 + b^3 = (a+b)(a^2 - ab + b^2)`
We can rearrange the `(x/2 + 2y) (x^2/4 - xy + 4y^2)`as
` = (x/2 + 2y)[(x/2)^2 - (x/2)(2y)+ (2y)^2]`
` = (x/2)^3 + (2y)^3`
`= (x/2 ) xx (x/2 )xx (x/2 )+ (2y) xx (2y) xx (2y) `
`= x^3/8 + 8y^3`
Hence the Product value of `(x/2 + 2y) (x^2/4 - xy + 4y^2)`is `x^2 / 8 + 8y^3`.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(x + 8) (x – 10)
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
Write in the expand form: `(2x - y + z)^2`
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
Evaluate of the following:
1113 − 893
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If x = −2 and y = 1, by using an identity find the value of the following
If x = −2 and y = 1, by using an identity find the value of the following
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Evaluate: (6 − 5xy) (6 + 5xy)
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.