Advertisements
Advertisements
Question
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
Solution
We have `x + 1/x = 11`
Now `(x + 1/x)^2= x^2 + (1/x)^2 + 2 xx x xx 1/x`
`=> (x + 1/x)^2 = x^2 + 1/x^2 + 2`
`=> (11)^2 = x^2 + 1/x^2 + 2` [∵ `x = 1/x = 11`]
`=> 121 = x^2 = 1/x^2 + 2 `
`=> x^2 + 1/x^2 = 119`
APPEARS IN
RELATED QUESTIONS
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Write the following cube in expanded form:
(2a – 3b)3
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Evaluate the following using identities:
117 x 83
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Write in the expanded form:
`(m + 2n - 5p)^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
Evaluate of the following:
(598)3
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Simplify by using formula :
(x + y - 3) (x + y + 3)
Simplify:
(x + y - z)2 + (x - y + z)2
Simplify:
(3a - 7b + 3)(3a - 7b + 5)