Advertisements
Advertisements
Question
If a + b = 10 and ab = 21, find the value of a3 + b3
Solution
In the given problem, we have to find the value of `a^3 + b^3`
Given `a+b = 10, ab = 21`
We shall use the identity `(a+b)^3 = a^3 +b^3 +3ab(a+b)`
Here putting, `a+b = 10,ab= 21`
`(10)^3 = a^3+ b^3 +3 (21)(10)`
` 1000 = a^3 +b^3 +630`
`1000 - 630 = a^3 +b^3`
`370 = a^3 + b^3`
Hence the value of `a^3 +b^3` is 370.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Write the following cube in expanded form:
(2x + 1)3
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
Evaluate of the following:
463+343
Simplify of the following:
(x+3)3 + (x−3)3
If x = −2 and y = 1, by using an identity find the value of the following
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If a2 + b2 + c2 − ab − bc − ca =0, then
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
Expand the following:
(3a – 5b – c)2
Expand the following:
(–x + 2y – 3z)2
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`