Advertisements
Advertisements
Question
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Solution 1
In the given problem, we have to find the value of `x^3 - 1/x^3`
Given `x-1/x = 3 + 2sqrt2`
Cubing on both sides of `x-1/x = 3 + 2sqrt2`
we get \[\left( x - \frac{1}{x} \right)^3 = \left( 3 + 2\sqrt{2} \right)^3\]
We shall use identity `(a+b)^3 = a^3+b^3 + 3ab (a+b)`
`(3+ 2sqrt2)^3 = x^3 -1/x^3- 3 xx x xx 1/x(x- 1/x)`
`3^3 + (2 sqrt2)^3 +3 xx3 xx 2sqrt2(3+2sqrt2) = x^3 - 1/x^3 - 3xx x xx 1/x xx (3+2sqrt2)`
`27 + 16sqrt2 + 18 sqrt2(3+2sqrt2) = x^3 - 1/x^3 - 3(3+2sqrt2)`
\[27 + 16\sqrt{2} + 18\sqrt{2} \times 3 + 18\sqrt{2} \times 2\sqrt{2} = x^3 - \frac{1}{x^3} - 9 - 6\sqrt{2}\]
\[27 + 16\sqrt{2} + 54\sqrt{2} + 72 = x^3 - \frac{1}{x^3} - 9 - 6\sqrt{2}\]
`27+ 16sqrt2 + 54sqrt2 + 72 + 9+ 6sqrt2 = x^3 - 1/x^3`
`[27 + 72 + 9]+[16sqrt2 + 54 sqrt2 +6sqrt2] = x^3 - 1/x^3`
`108 + 76 sqrt2 = x^3 - 1/x^3`
Hence the value of `x^3-1/x^3`is `108+76sqrt2`.
Solution 2
`(x - 1/x)^3 = (x^3 - 1/x^3) =- 3 · x · 1/x · (x - 1/x)`
`x^3 - 1/x^3 = (x - 1/x)^3 + 3(x - 1/x)`
`x^3 - 1/x^3 = (3 + 2sqrt2)^3 + 3(3 + 2sqrt2)`
= `3 + 2sqrt2 ((3 + 2sqrt2)^2 + 3)`
= `(3 + 2sqrt2) (9 + 8 + 12sqrt2 + 3)`
= `63 + 36sqrt2 + 42sqrt2 + 24 · 2`
= `63 + 48 + 78sqrt2`
= `111 + 78sqrt2`.
APPEARS IN
RELATED QUESTIONS
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Evaluate following using identities:
991 ☓ 1009
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
(a − b)3 + (b − c)3 + (c − a)3 =
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Use the direct method to evaluate :
(x+1) (x−1)
Expand the following:
(a + 3b)2
Simplify by using formula :
(2x + 3y) (2x - 3y)
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If p + q = 8 and p - q = 4, find:
p2 + q2
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)