Advertisements
Advertisements
Question
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Solution
In the given problem, we have to find cube of the binomial expressions
Given `(2x + 3/x)^3`
We shall use the identity `(a+b)^3 = a^3+b^3 +3ab(a+b).`
Here `a = 2x,b = 3/x,`
By applying identity we get
`(2x + 3/x)^3 = (2x)^3 +(3/x)^3 + 3 (2x) (3/x) (2x+3/x)`
`= 2x xx 2x xx2x|+3/x xx3/x xx 3/x+18x/x (2x+3/x)`
`= 8x^3 +27/x^3 + (18x)/x (2x + 3/x)`
` = 8x^3 +27/x^3 + (18xx 2x) +(18 xx 3/x)`
`8^3+27/x^3 + 36x +54/x`
Hence cube of the binomial expression of `(2x + 3/x) 8^3+27/x^3 + 36x +54/x`
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
Write in the expanded form: (ab + bc + ca)2
Write in the expanded form: `(x/y + y/z + z/x)^2`
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
(a − b)3 + (b − c)3 + (c − a)3 =
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Evalute : `((2x)/7 - (7y)/4)^2`
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Evaluate: (9 − y) (7 + y)
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Expand the following:
`(1/x + y/3)^3`
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).