Advertisements
Advertisements
Question
Write in the expanded form: `(x/y + y/z + z/x)^2`
Solution
We have
`(x/y + y/z + z/x)^2 = (x/y)^2 + (y/z)^2 + (z/x)^2 + 2. x/y.y/z + 2 y/z. z/x + 2. z/x. x/y`
`[∵ (a + b + c)^2 = a^2 + b^2 + 2ab + c^2 + 3bc + 2ca]`
`∴ (x/y + y/z + z/x)^2 = x^2/y^2 + y^2/z^2 + z^2/x^2 + 2 x/z + 2 y/x + 2 z/y`
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(x + 2y + 4z)2
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Write in the expanded form:
(2a - 3b - c)2
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If a1/3 + b1/3 + c1/3 = 0, then
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Use identities to evaluate : (998)2
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
(x + y - z)2 + (x - y + z)2
Simplify:
(2x + y)(4x2 - 2xy + y2)
Factorise the following:
9y2 – 66yz + 121z2