Advertisements
Advertisements
Question
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Solution
We have
`a^2 + b^2 + c^2 - ab - bc - ca`
`= 2/2[a^2 + b^2 + c^2 - ab - bc - ca]` [Mulitply and divide by 2]
`= 1/2 [2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca]`
`= 1/2 [a^2 + a^2 + b^2 + b^2 + c^2 - 2ab - 2bc - 2ac]`
`= 1/2[(a^2 + b^2 - 2ab) + (a^2 + c^2 - 2ac) + (b^2 + c^2 - 2bc)]`
`= 1/2 [(a - b)^2 + (b - c)^2 + (c - a)^2]` `[∵ (a - b)^2 = a^2 + b^2 - 2ab]`
`= ((a - b)^2 + (b -c)^2 + (c - a)^2)/2 >= 0`
`∴ a^2 + b^2 + c^2 - ab - bc -ca >= 0`
hence `a^2 + b^2 - ab - bc - ca > 0`
Hence `a^2 + b^2 + c^2 - ab - bc - ca` is always non-negative for all values of a, b and c.
APPEARS IN
RELATED QUESTIONS
Evaluate the following using identities:
(2x + y) (2x − y)
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Write in the expanded form:
`(a + 2b + c)^2`
Evaluate of the following:
1043 + 963
Simplify of the following:
(x+3)3 + (x−3)3
Find the following product:
Evaluate:
253 − 753 + 503
Evaluate:
483 − 303 − 183
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Use the direct method to evaluate :
(x+1) (x−1)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If a - b = 10 and ab = 11; find a + b.
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.