Advertisements
Advertisements
प्रश्न
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
उत्तर
We have
`a^2 + b^2 + c^2 - ab - bc - ca`
`= 2/2[a^2 + b^2 + c^2 - ab - bc - ca]` [Mulitply and divide by 2]
`= 1/2 [2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca]`
`= 1/2 [a^2 + a^2 + b^2 + b^2 + c^2 - 2ab - 2bc - 2ac]`
`= 1/2[(a^2 + b^2 - 2ab) + (a^2 + c^2 - 2ac) + (b^2 + c^2 - 2bc)]`
`= 1/2 [(a - b)^2 + (b - c)^2 + (c - a)^2]` `[∵ (a - b)^2 = a^2 + b^2 - 2ab]`
`= ((a - b)^2 + (b -c)^2 + (c - a)^2)/2 >= 0`
`∴ a^2 + b^2 + c^2 - ab - bc -ca >= 0`
hence `a^2 + b^2 - ab - bc - ca > 0`
Hence `a^2 + b^2 + c^2 - ab - bc - ca` is always non-negative for all values of a, b and c.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
Write the following cube in expanded form:
(2x + 1)3
Evaluate the following using suitable identity:
(99)3
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If x = −2 and y = 1, by using an identity find the value of the following
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
(a − b)3 + (b − c)3 + (c − a)3 =
If a1/3 + b1/3 + c1/3 = 0, then
Find the square of : 3a + 7b
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
(4+5x) (4−5x)
Evaluate: 20.8 × 19.2
Expand the following:
(a + 4) (a + 7)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`