Advertisements
Advertisements
प्रश्न
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
उत्तर
In the given problem, we have to find the value of equation using identity
(i) Given (9y2 − 4x2) (81y4 +36x2y2 + 16x4)
We shall use the identity `(a- b) (a^2 + ab + b^2) = (a^3 - b^3)`
We can rearrange the (9y2 − 4x2) (81y4 +36x2y2 + 16x4)as
`(9y^2 - 4x^2) ((9y^2)^2) + 9y^2 xx 4x^2 + (4x^2)^2)`
`= (9y^2)^3 - (4x^2)^3`
` = (9y^2) xx (9y^2) xx (9y^2) + (4x^2) xx (4x^2) xx(4x^2) `
`= 729y^6 - 64x^6`
Now substituting the value x =,y = -1 in `729y^6 - 64x^6`we get,
`729y^6 - 64x^6`
`729(-1)^6 - 64(3)^6`
`729(1) - 64(729)`
`729 - 46656`
`=-45927`
Hence the Product value of (9y2 − 4x2) (81y4 +36x2y2 + 16x4)is `=-45927`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(x + 2y + 4z)2
Evaluate the following using suitable identity:
(99)3
Factorise the following:
27 – 125a3 – 135a + 225a2
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Evaluate the following using identities:
(2x + y) (2x − y)
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
(598)3
Find the following product:
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Expand the following:
(3a – 5b – c)2
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`