Advertisements
Advertisements
प्रश्न
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
उत्तर
`x + (1)/x = "p", x - (1)/x = "q"`
`(x + 1/x)^2`
= `x^2 + (1)/x^2 +2`
⇒ p2 = `x^2 + (1)/x^2 + 2`
⇒ `x^2 + (1)/x^2 = "p"^2 - 2` ...(1)
Also, `(x - 1/x)^2`
= `x^2 + (1)/x^2 - 2`
⇒ `"q"^2 = x^2 + (1)/x^2 - 2`
⇒ `x^2 + (1)/x^2 = "q"^2 + 2` ...(2)
Equating the value `x^2 + (1)/x^2` from and (2), we get :
p2 - 2 = q2 + 2
⇒ p2 - q2 = 4.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(998)3
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
Use identities to evaluate : (502)2
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
If x + y = 9, xy = 20
find: x2 - y2.
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Evaluate the following :
7.16 x 7.16 + 2.16 x 7.16 + 2.16 x 2.16
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz