Advertisements
Advertisements
प्रश्न
Find the following product:
उत्तर
Given (x3 + 1) (x6 − x3 + 1)
We shall use the identity, `a^3 + b^3 = (a+ b) (a^2 + b^2 - ab)`
We can rearrange the `(x^3 + 1) (x^6 - x^3 + 1)`as
`= (x^3 + 1) [(x^3)^2 - (x^3)(1) + (1)^2]`
`= (x^3)^3 + (1)^3`
` = (x^3) xx (x^3)xx (x^3) + (1) xx (1) xx (1) `
` = x^9 + 1^3`
` = x^9 + 1`
Hence the Product value of `(x^3 + 1) (x^6 - x^3 + 1)`is .`x^9 + 1`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Factorise the following:
64m3 – 343n3
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Evaluate of the following:
`(10.4)^3`
Simplify of the following:
(x+3)3 + (x−3)3
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the following product:
If x = −2 and y = 1, by using an identity find the value of the following
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
Find the square of : 3a - 4b
Evalute : `( 7/8x + 4/5y)^2`
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
(4+5x) (4−5x)
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.