Advertisements
Advertisements
प्रश्न
Simplify of the following:
(x+3)3 + (x−3)3
उत्तर
In the given problem, we have to simplify equation
Given (x+3)3 + (x−3)3
We shall use the identity `a^3 + b^3 = (a + b)(a^2+b^2 - ab)`
Here `a= (x+3),b= (x-3)`
By applying identity we get
` = (x+ 3+x - 3)[(x+ 3)^2 + (x-3)^2 - (x+ 3)(x-3)]`
` = 2x[(x^2 + 3^2 + 2 xx x xx 3) + (x^2 + 3^2 - 2 xx x xx 3) -(x^2-3^2)]`
` = 2x [(x^2+ 9 + 6x) + (x^2 + 9 - 6 x)-(x^2 - 3^2)]`
` = 2x[x^2 + 9 + 6x + x^2 + 9 -6x - x^2 + 9]`
`= 2x [x^2 + x^2 - x^2 - 6x + 6x+ 9 + 9 + 9]`
` = 2x [x^2 + 27]`
` = 2x^3 + 54x`
Hence simplified form of expression`(x+3)^3 +(x-3)^3`is `2x^3 + 54x`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Factorise the following using appropriate identity:
4y2 – 4y + 1
Write the following cube in expanded form:
`[x-2/3y]^3`
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Evaluate the following using identities:
(399)2
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Expand the following:
(2p - 3q)2
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
Expand the following:
`(4 - 1/(3x))^3`
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3