Advertisements
Advertisements
प्रश्न
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
उत्तर १
In the given problem, we have to find the value of `x^3 - 1/x^3`
Given `x-1/x = 3 + 2sqrt2`
Cubing on both sides of `x-1/x = 3 + 2sqrt2`
we get \[\left( x - \frac{1}{x} \right)^3 = \left( 3 + 2\sqrt{2} \right)^3\]
We shall use identity `(a+b)^3 = a^3+b^3 + 3ab (a+b)`
`(3+ 2sqrt2)^3 = x^3 -1/x^3- 3 xx x xx 1/x(x- 1/x)`
`3^3 + (2 sqrt2)^3 +3 xx3 xx 2sqrt2(3+2sqrt2) = x^3 - 1/x^3 - 3xx x xx 1/x xx (3+2sqrt2)`
`27 + 16sqrt2 + 18 sqrt2(3+2sqrt2) = x^3 - 1/x^3 - 3(3+2sqrt2)`
\[27 + 16\sqrt{2} + 18\sqrt{2} \times 3 + 18\sqrt{2} \times 2\sqrt{2} = x^3 - \frac{1}{x^3} - 9 - 6\sqrt{2}\]
\[27 + 16\sqrt{2} + 54\sqrt{2} + 72 = x^3 - \frac{1}{x^3} - 9 - 6\sqrt{2}\]
`27+ 16sqrt2 + 54sqrt2 + 72 + 9+ 6sqrt2 = x^3 - 1/x^3`
`[27 + 72 + 9]+[16sqrt2 + 54 sqrt2 +6sqrt2] = x^3 - 1/x^3`
`108 + 76 sqrt2 = x^3 - 1/x^3`
Hence the value of `x^3-1/x^3`is `108+76sqrt2`.
उत्तर २
`(x - 1/x)^3 = (x^3 - 1/x^3) =- 3 · x · 1/x · (x - 1/x)`
`x^3 - 1/x^3 = (x - 1/x)^3 + 3(x - 1/x)`
`x^3 - 1/x^3 = (3 + 2sqrt2)^3 + 3(3 + 2sqrt2)`
= `3 + 2sqrt2 ((3 + 2sqrt2)^2 + 3)`
= `(3 + 2sqrt2) (9 + 8 + 12sqrt2 + 3)`
= `63 + 36sqrt2 + 42sqrt2 + 24 · 2`
= `63 + 48 + 78sqrt2`
= `111 + 78sqrt2`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Evaluate the following using suitable identity:
(102)3
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Write in the expanded form:
`(a + 2b + c)^2`
Write in the expanded form (a2 + b2 + c2 )2
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
Use identities to evaluate : (998)2
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Simplify by using formula :
(x + y - 3) (x + y + 3)
Simplify:
(2x + y)(4x2 - 2xy + y2)