Advertisements
Advertisements
प्रश्न
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
उत्तर
n the given problem, we have to find value of x3 + y3 + z3 −3xyz
Given x + y + z = 8 , xy +yz +zx = 20
We shall use the identity
`(x+y+z)^2 = x^2 + y^2 + z^2 + 2 (xy + yz +za)`
`(x+y+z)^2 = x^2 + y^2 + z^2 +2 (20)`
`64 = x^2 + y^2 +z^2 + 40`
`64 - 40 = x^2 + y^2 + z^2`
`24 = x^2 + y^2 + z^2`
We know that
`x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - yz -zx)`
`x^3 + y^3 + z^3 - 3xyz = (x+y+z)[(x^2 + y^2 + z^2 )- (xy - yz -zx)]`
Here substituting `x+y +z = 8,xy +yz + zx = 20,x^2 +y^2 + z^2 = 24 ` we get
`x^3 + y^3 + z^3 -3xyz = 8 [(24 - 20)] `
` = 8 xx 4`
` =32`
Hence the value of x3 + y3 + z3 −3xyz is 32.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Evaluate the following using identities:
(2x + y) (2x − y)
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Write in the expanded form:
`(m + 2n - 5p)^2`
Write in the expanded form: (-2x + 3y + 2z)2
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Evaluate of the following:
`(10.4)^3`
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
Evaluate:
483 − 303 − 183
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Find the squares of the following:
3p - 4q2
If m - n = 0.9 and mn = 0.36, find:
m + n
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Which one of the following is a polynomial?
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz