Advertisements
Advertisements
प्रश्न
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^3 + 1/x^3`
Given `x^3 + 1/x^3 = 98`
We shall use the identity `(x+y)^2 = x^2 + y^2 + 2xy`
Here putting `x^2 + 1/x^2 = 98`,
`(x+1/x)^2 = x^2 +1/x^2 + 2 xx x xx 1/x`
`(x+1/x)^2 = x^2 +1/x^2 + 2 xx x xx 1/x`
`(x+1/x)^2 = 98 + 2`
`(x+1/x)^2 = 100`
`(x+1/x) = sqrt100`
`(x+1/x) = ± 10`
In order to find `x^3 +1/x^3`we are using identity `a^3 +b^3 = (a+b)(a^2 +b^2 - ab)`
`x^3 + 1/x^3 = ( x+1/x) (x^2 + 1/x^2 - x xx 1/x)`
Here `(x+1/x) = 10` and `x^2 + 1/x^2 = 98`
`x^3 + 1 /x^3 = (x+1/x)(x^2 + 1/x^2 - x xx 1/x)`
` = 10 (98 - 1)`
` = 10 xx 97`
` = 970`
Hence the value of `x^3 + 1/x^3` is 970.
APPEARS IN
संबंधित प्रश्न
Evaluate following using identities:
(a - 0.1) (a + 0.1)
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
Evaluate of the following:
1113 − 893
Find the following product:
If a + b = 6 and ab = 20, find the value of a3 − b3
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Use identities to evaluate : (998)2
If a - b = 7 and ab = 18; find a + b.
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Use the direct method to evaluate :
(x+1) (x−1)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.