Advertisements
Advertisements
प्रश्न
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
उत्तर
We know that,
( a + b )2 = a2 + 2ab + b2
and
( a - b )2 = a2 - 2ab + b2
Thus,
`( a + 1/a )^2 = a^2 + 1/a^2 + 2 xx a xx 1/a`
= `a^2 + 1/a^2 + 2` .....(1)
Given that `a + 1/a` = 6; Substitute in equation (1), we have
`(6)^2 = a^2 + 1/a^2 + 2`
⇒ `a^2 + 1/a^2 = 36 - 2`
⇒ `a^2 + 1/a^2 = 34` ....(2)
Similarly, consider
`( a - 1/a )^2 = a^2 + 1/a^2 - 2 xx a xx 1/a`
= `a^2 + 1/a^2 - 2`
= 34 - 2 [ from (2) ]
⇒ `( a - 1/a )^2` = 32
⇒ `( a - 1/a ) = +- sqrt32`
⇒ `( a - 1/a ) = +- 4sqrt2` ....(3)
(ii) We need to find `a^2 - 1/a^2`
We know that, `a^2 - 1/a^2 = ( a - 1/a )( a + 1/a )`
`a - 1/a = +- 4sqrt2 ; a + 1/a = 6`
Thus,
`a^2 - 1/a^2 = (+- 4sqrt2 )(6)`
⇒ `a^2 - 1/a^2 = (+- 24sqrt2 )`
APPEARS IN
संबंधित प्रश्न
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Write in the expanded form (a2 + b2 + c2 )2
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Expand the following:
(2p - 3q)2
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.