Advertisements
Advertisements
प्रश्न
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
उत्तर
In the given problem, we have to find the value of `8x^3 + 27y^3`
Given`2x + 3y = 13, xy = 6`
In order to find `8x^3 + 27y^3`we are using identity `(a+b )^3 = a^3 + b^3 + 3ab(a+b)`
`(2x + 3y )^3 = (13)^3`
`8x^3 + 27 y^3 + 3 (2x)(3y)(2x+ 3y)= 2197`
` 8x^3 + 27y^3 + 18xy (2x+ 3y) = 2197`
Here putting, `2x + 3y = 13, xy = 6`
`8x^3 + 27y^3 + 18 xx 6 xx 13 = 2197`
` 8x^3 + 27y^3 + 1404 = 2197`
` 8x^3 + 27y^3 = 2197 - 1404`
`8x^3+ 27y^3 = 793`
Hence the value of `8x^3 + 27y^3` is 793.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Factorise the following using appropriate identity:
4y2 – 4y + 1
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
Evaluate the following using identities:
(0.98)2
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
If x = −2 and y = 1, by using an identity find the value of the following
Evaluate:
253 − 753 + 503
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
If a − b = −8 and ab = −12, then a3 − b3 =
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: (2 − z) (15 − z)
Find the squares of the following:
9m - 2n
Simplify by using formula :
(x + y - 3) (x + y + 3)
Evaluate the following without multiplying:
(95)2
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4