Advertisements
Advertisements
प्रश्न
If x = −2 and y = 1, by using an identity find the value of the following
उत्तर
n the given problem, we have to find the value of (4y2 − 9x2) (16y4 + 36x2y2+81x4) using identity
Given x=-2 y = 1
We shall use the identity `(a-b)(a^2 + ab+b^2) = a^3 - b^3`
We can rearrange the 4y2 − 9x2 (16y4 + 36x2y2+81x4) as
`(4y^2 - 9x^2 ) (16y^4 + 36x^2 + 81x^4) = (4y^2 - 9x^2)((4y^2)^2 + 4y^2 xx 9x^2 + (9x^2)^2)`
`= (4y^2)^3 - (9x^2)^3`
\[= \left( 4 y^2 \right) \times \left( 4 y^2 \right) \times \left( 4 y^2 \right) - \left( 9 x^2 \right) \times \left( 9 x^2 \right) \times \left( 9 x^2 \right)\]
\[ = 64 y^6 - 729 x^6\]
Now substituting the value x = -2 , y =1 in `64y^6 - 729x^6`we get,
`= 64y^6 - 729x^6`
` = 64(1)^6 - 729(-2)^6`
` = 64 - 729(64)`
Taking 64 as common factor in above equation we get,
` = 64 (1-729)`
` = 64 xx -728`
` = -46592`
Hence the Product value of (4y2 − 9x2 )(16y4 + 36x2y2+81x4) is ` = -46592`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(99)3
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate the following using identities:
(2x + y) (2x − y)
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
If x = −2 and y = 1, by using an identity find the value of the following
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If a1/3 + b1/3 + c1/3 = 0, then
Find the square of `(3a)/(2b) - (2b)/(3a)`.
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: (2 − z) (15 − z)
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If x + y = 1 and xy = -12; find:
x - y
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`