Advertisements
Advertisements
प्रश्न
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
उत्तर
We have
`[2x^2 - 4x^2 + 1][2x^4 - 4x^2 - 1]`
`=> [(2x^4 - 4x^2)^2 - (1)^2] [∵ (a + b)(a - b) = a^2 - b^2]`
`=> [(2x^4)^2 + (4x^2)^2 - 2(2x^4)(4x^2) - 1]`
`=> 4x^8 + 16^4 - 16x^6 - 1 [∵ (a - b)^2 = a^2 + b^2 - 2ab]`
`=> 4x^8 - 16x^6 + 16x^4 - 1`
`∴ [2x^4 - 4x^2 + 1][2x^4 - 4x^2 - 1] = 4x^8 - 16x^6 + 16x^4 - 1`
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(3a – 7b – c)2
Write the following cube in expanded form:
`[x-2/3y]^3`
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Evaluate of the following:
(99)3
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
Evaluate:
253 − 753 + 503
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate :
(2+a) (2−a)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Find the squares of the following:
9m - 2n
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If p + q = 8 and p - q = 4, find:
pq
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`