Advertisements
Advertisements
प्रश्न
Evaluate of the following:
(99)3
उत्तर
In the given problem, we have to find the value of numbers
Given (99)3
In order to find (99)3 we are using identity `(a-b)^3 = a^3 - b^3 - 3ab (a-b)`
We can write (99)3 as `(100 - 1)^3`
Hence where a= 100,b =1
(99)3 ` = (100 - 1)^3`
`= (100)^3 - (1)^3 - 3 (100)(1)(100 - 1)`
`= 1000000 - 1 - 300 xx 99`
`= 1000000 - 1 - 29700`
`= 1000000 - 29701`
` = 970299`
The value of (99)3 is 970299 .
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate the following:
(98)3
Simplify of the following:
If x = −2 and y = 1, by using an identity find the value of the following
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
(a − b)3 + (b − c)3 + (c − a)3 =
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
(2a+3) (2a−3)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Expand the following:
(3x + 4) (2x - 1)
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).