Advertisements
Advertisements
प्रश्न
Simplify of the following:
उत्तर
In the given problem, we have to simplify equation
Given \[\left( \frac{x}{2} + \frac{y}{3} \right)^3 - \left( \frac{x}{2} - \frac{y}{3} \right)^3\]
We shall use the identity `a^3 - b^3 = (a-b)(a^2+b^2 + ab)`
Here `a=(x/2 + y/3 ),b= (x/2 - y/3)`
By applying identity we get
`((x/2 +y/3) -(x/2 - y/3)) [(x/2 +y/3)^2 + (x/2 - y/3)^2 - (x/2 +y/3) (x/2 -y/3) ]`
` = (x/2 + y/3 - x/2+y/3) [((x/2)^2+(y/3)^2 + (2xy)/6)^2 + ((x/2)^2+ (y/3)^2 - (2xy)/6)^2 + ((x/2)^2 - (y/3)^2) )]`
`= (2y)/3 [(x^2 /4 + y^2/9 +(2xy)/6) + (x^2/4 + y^2/9 - (2xy)/6) + x^2/4 - y^2/9]`
` =( 2y)/3 [x^2 /4+ y^2/9 + (2xy)/6 + x^2/4 - y^2/9 - (2xy)/6 + x^2 /4 - y^2/9]`
By rearranging the variable we get
` = (2y)/3 [x^2/4 + y^2/9 + x^2/4 + x^2/4]`
` = (2y)/3 [(3x^2)/4 + y^2/9]`
` = (x^2y)/2 + (2y^3)/27`
Hence the simplified value of`(x/2 + y/3)^3 - (x/2 - y/3)^3` is `(x^2y)/2+(2y^3)/27`
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2x + 1)3
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
Write in the expanded form:
`(2 + x - 2y)^2`
Write in the expand form: `(2x - y + z)^2`
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
Evaluate of the following:
1113 − 893
If a1/3 + b1/3 + c1/3 = 0, then
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Use identities to evaluate : (101)2
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate :
(x+1) (x−1)
Expand the following:
(a + 4) (a + 7)
Simplify by using formula :
(5x - 9) (5x + 9)
Simplify by using formula :
(x + y - 3) (x + y + 3)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Expand the following:
(3a – 2b)3