Advertisements
Advertisements
प्रश्न
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
उत्तर
In the given problem, we have to simplify equation
Given `(x+ 2/x)^3 + (x-2/x) `
We shall use the identity `a^3 + b^3 = (a+b)(a^2 +b^2 - ab)`
Here `a= (x+2/x) ,b=(x-2/x)`
By applying identity we get
` = (x+2/x + x - 2/x-2/x) [(x+2/x)^2 + (x-2/x)^2 - ((x+2/x) xx (x-2/x))]`
` = (x+2/x + x -2/x) [(x xx x + 2/x xx 2/x + 2 xx x xx 2/x) +(x xx x + 2/x xx 2/x - 2 xx x xx 2/x) - (x^2 + 4/x^2)]`
` = (2x)[(x^2 + 4/x^2 +(4x)/x)+ (x^2 + 4/x^2 -(4x)/x) - (x^2 - 4/x^2)]`
` = (2x)[x^2+ 4/x^2 + (4x)/x + x^2 + 4 /x^2 -(4x)/x - x^2 + 4 /x^2]`
By rearranging the variable we get,
` = (2x)[x^2 + 4/x^2 + 4/x^2 + 4/x^2]`
` = 2x xx [x^2+ 12/x^2]`
` = 2x^3 + 24/x`
Hence the simplified value of `(x+2/x)^3+(x-2/x)^3`is `2x^3 + 24/x`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(x + 2y + 4z)2
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If a + b = 10 and ab = 21, find the value of a3 + b3
Evaluate of the following:
(9.9)3
Find the following product:
Find the following product:
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
(a − b)3 + (b − c)3 + (c − a)3 =
Evalute : `((2x)/7 - (7y)/4)^2`
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
Simplify:
(4x + 5y)2 + (4x - 5y)2
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Factorise the following:
4x2 + 20x + 25