Advertisements
Advertisements
प्रश्न
Find the following product:
उत्तर
Given `(x^2 - 1) (x^4+x^2 + 1)`
We shall use the identity `(a-b) (a^2 + ab + b^2) = a^3 - b^3`
We can rearrange the `(x^2 - 1)(x^4 + x^2 + 1)`as
\[\left( x^2 - 1 \right)\left[ \left( x^2 \right)^2 + \left( x^2 \right)\left( 1 \right) + \left( 1 \right)^2 \right]\]
`= (x^2)^3 - (1)^3`
` = (x^2) xx(x^2) xx (x^2) - (1) xx (1) xx (1)`
` = x^6 - 1^3`
` = x^6 - 1`
Hence the Product value of `(x^2 - 1) (x^4 +x^2 + 1)`is `x^6 - 1`.
APPEARS IN
संबंधित प्रश्न
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
Evaluate:
253 − 753 + 503
Find the square of : 3a + 7b
Use identities to evaluate : (101)2
Use identities to evaluate : (97)2
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate :
(xy+4) (xy−4)
Evaluate: (2 − z) (15 − z)
Evaluate: 203 × 197
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
The value of 2492 – 2482 is ______.
Factorise the following:
9y2 – 66yz + 121z2
Expand the following:
(–x + 2y – 3z)2