Advertisements
Advertisements
प्रश्न
Find the following product:
उत्तर
Given (1 + x) (1 − x + x2)
We shall use the identity `(a+b)(a^2 - ab +b^2) = a^3 + b^3`
We can rearrange the (1 + x) (1 − x + x2)as
` = (1+x)[(1)^2 - (1)(x)+(x)^2]`
` = (1)^3 + (x)^3`
` = (1)xx (1)xx(1) + (x)xx (x)xx(x)`
` = 1+x^3`
Hence the Product value of `(1+x)(1-x+x^2)`is `1+x^2`
APPEARS IN
संबंधित प्रश्न
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Write in the expanded form:
(2a - 3b - c)2
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Evaluate of the following:
1113 − 893
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
(a − b)3 + (b − c)3 + (c − a)3 =
If a2 + b2 + c2 − ab − bc − ca =0, then
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Simplify by using formula :
(a + b - c) (a - b + c)
Evaluate the following without multiplying:
(1005)2
Expand the following:
(–x + 2y – 3z)2
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
Expand the following:
(3a – 2b)3
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).