Advertisements
Advertisements
प्रश्न
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).
उत्तर
To prove: (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a)
L.H.S = [(a + b + c)3 – a3] – (b3 + c3)
= (a + b + c – a)[(a + b + c)2 + a2 + a(a + b + c)] – [(b + c)(b2 + c2 – bc)] ...[Using identity, a3 + b3 = (a + b)(a2 + b2 – ab) and a3 – b3 = (a – b)(a2 + b2 + ab)]
= (b + c)[a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + a2 + ab + ac] – (b + c)(b2 + c2 – bc)
= (b + c)[b2 + c2 + 3a2 + 3ab + 3ac – b2 – c2 + 3bc]
= (b + c)[3(a2 + ab + ac + bc)]
= 3(b + c)[a(a + b) + c(a + b)]
= 3(b + c)[(a + c)(a + b)]
= 3(a + b)(b + c)(c + a) = R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Evaluate the following using identities:
(2x + y) (2x − y)
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
If x = −2 and y = 1, by using an identity find the value of the following
If x = −2 and y = 1, by using an identity find the value of the following
Evaluate:
483 − 303 − 183
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
Evaluate: (9 − y) (7 + y)
Evaluate: (2 − z) (15 − z)
Evaluate the following without multiplying:
(999)2
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
Using suitable identity, evaluate the following:
101 × 102
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).