Advertisements
Advertisements
प्रश्न
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
पर्याय
35
58
127
none of these
उत्तर
We have to find `a^2 + b^2 + c^2`
Given `a+b + c = 9,ab+bc +ca = 23`
Using identity `(a+b+c)^2 = a^2 + b^2 +c^2+2ab + 2bc + 2ca` we get,
`(9)^2 = a^2 +b^2 + c^2+ 2 (ab + bc + ca)`
` 9 xx 9 = a^2 + b^2 + c^2 +2 xx 23`
`81 = a^2 + b^2 + c^2+46`
By transposing +46 to left hand side we get,
`81 - 46 = a^2 +b^2 +c^2`
` 35 = a^2 +b^2 +c^2`
Hence the value of `a^2 +b^2 +c^2` is 35.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(x + 2y + 4z)2
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Write the expanded form:
`(-3x + y + z)^2`
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
Find the square of : 3a - 4b
If a + b = 7 and ab = 10; find a - b.
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate :
(xy+4) (xy−4)
Evaluate: (2 − z) (15 − z)
Evaluate: (5xy − 7) (7xy + 9)
Simplify by using formula :
(2x + 3y) (2x - 3y)
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Using suitable identity, evaluate the following:
101 × 102
Expand the following:
(3a – 5b – c)2
Find the following product:
(x2 – 1)(x4 + x2 + 1)