Advertisements
Advertisements
प्रश्न
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
पर्याय
25
35
49
30
उत्तर
We have to find the value of `(9x^2 - 4/x^2)`
Given `3x +2/x = 7`
Using identity `(a+b)^2 = a^2 +b^2 +2ab` we get,
Here ` a = 3x ,b= 2/x`
`(3x +2/x )^2 = (3x)^2 + 2 xx 3x xx 2/x + (2/x)^2`
Substituting `3x + 2/x = 7` we get,
`(7)^2 = 9x^2 + 2 xx 3 xx x xx 2/x +(2/x)^2``
`49 = 9x^2 + 12 +4/x^2`
By transposing + 12 left hand side we get,
`49 - 12 = 9x^2 +4/x^2`
`37 = 9x^2 + 4/ x^2`
Again using identity `(a-b)^2 = a^2 - 2ab +b^2` we get,
`(3x - 2/x)^2 = (3x )^2 - 2 xx 3x xx 2/x + (2/x)^2`
`(3x- 2/x)^2=(9x)^2 + 4/x^2 - 12`
Substituting `(9x)^2 + 4/x^2 = 37` we get
`(3x - 2/x)^2 = 37 - 12`
`(3x - 2/x)^2 = 25`
`(3x - 2/x)(3x - 2/x) = 5 xx 5`
`3x - 2/x = 5`
Using identity (x + y)( x - y )we get
Here ` x= 3x,y = 2/x`
`(3x)^2 - (2/x)^2 = (3x + 2/x)(3x - 2/x)`
Substituting `3x +2/x = 7,3x - 2/x = 5` we get,
`9x^2 - 4/x^2 = 7 xx 5 `
`9x^2 - 4/x^2 = 35`
The value of `9x^2 - 4/x^2`is 35.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Evaluate the following using identities:
`(2x+ 1/x)^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Find the following product:
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
Find the square of : 3a + 7b
If a - b = 7 and ab = 18; find a + b.
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
Expand the following:
(–x + 2y – 3z)2
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`