Advertisements
Advertisements
प्रश्न
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
उत्तर
`("r" - 1/"r")^2`
= `"r"^2 + (1)/"r"^2 - 2`
⇒ (4)2 = `"r"^2 + (1)/"r"^2 - 2`
⇒ `"r"^2 + (1)/"r"^2`
= 16 + 2
= 18.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Expand the following, using suitable identity:
(x + 2y + 4z)2
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Write in the expanded form:
`(m + 2n - 5p)^2`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
Use identities to evaluate : (101)2
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.