Advertisements
Advertisements
प्रश्न
If a - b = 7 and ab = 18; find a + b.
उत्तर
We know that,
( a - b )2 = a2 - 2ab + b2
and
( a + b )2 = a2 + 2ab + b2
Rewrite the above equation, we have
( a + b )2 = a2 + b2 - 2ab + 4ab
= ( a + b )2 + 4ab ...(1)
Given that a - b = 7; ab = 18
Substitute the values of ( a - b ) and (ab)
in equation (1), we have
( a + b )2 = (7)2 + 4(18)
= 49 + 72 = 121
⇒ a + b = `+- sqrt121`
⇒ a + b = `+-11`
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
`x^2 - y^2/100`
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Evalute : `( 7/8x + 4/5y)^2`
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Use the direct method to evaluate :
(2a+3) (2a−3)
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Find the following product:
(x2 – 1)(x4 + x2 + 1)