Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
पर्याय
927
414
364
322
उत्तर
In the given problem, we have to find the value of `x^6 + 1/x^6`
Given `x+ 1/x =3`
We shall use the identity `(a + b)^3 = a^3 + b^3 + 3ab (a+b)`and `a^2 + b^2 + 2ab = (a+b)`
Here put `x+ 1/x = 3`,
`(x+ 1/x)^2 = x^2 + 1/x^2 + 2( x xx 1/x)`
`(3)^2 = x^2 + 1/x^2 + 2 (x xx 1/x)`
`9 = x^2 + 1/x^2 + 2`
`9-2 = x^2 + 1/x^2`
`7 = x^2 + 1/x^2`
Take Cube on both sides we get,
`(x^2 + 1/x^2 )^3 = (x^2)^3 + 1/(x^2)^3 + 3 (x^2 xx 1/x^2)(x^2 + 1/x^2)`
`(7)^3 = x^6 + 1/x^6 + 3(x^2 xx 1/x^2) (7)`
`343 = x^6 + 1/x^6 + 7 xx 3`
`343 - 21 = x^6 + 1/x^6`
`322 = x^6 + 1/x^6`
Hence the value of `x^6 + 1/x^6` is 322.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(2x – y + z)2
Write the following cube in expanded form:
`[3/2x+1]^3`
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Write in the expanded form:
(2a - 3b - c)2
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
The product (x2−1) (x4 + x2 + 1) is equal to
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Use the direct method to evaluate :
(x+1) (x−1)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`