Advertisements
Advertisements
प्रश्न
Expand the following, using suitable identity:
(2x – y + z)2
उत्तर
It is known that,
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
(2x – y + z)2 = (2x)2 + (–y)2 + (z)2 + 2(2x)(–y) + 2(–y)(z) + 2(z)(2x)
= 4x2 + y2 + z2 - 4xy – 2yz + 4xz
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Evaluate the following using identities:
117 x 83
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Find the following product:
Find the following product:
If a + b = 8 and ab = 6, find the value of a3 + b3
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(7a +5b)2 - (7a - 5b)2
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.