Advertisements
Advertisements
प्रश्न
Expand the following, using suitable identity:
(2x – y + z)2
उत्तर
It is known that,
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
(2x – y + z)2 = (2x)2 + (–y)2 + (z)2 + 2(2x)(–y) + 2(–y)(z) + 2(z)(2x)
= 4x2 + y2 + z2 - 4xy – 2yz + 4xz
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Write in the expanded form: (ab + bc + ca)2
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
If a2 + b2 + c2 − ab − bc − ca =0, then
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Use identities to evaluate : (998)2
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
Using suitable identity, evaluate the following:
1033
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3